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Abstract

The problem of a single sampling plan with polynomial loss for the exponential distribution
based on uniformly distributed random censored data has been considered. A Bayes sampling
plan is derived under various schemes of censoring time. It is specially focused on a quadratic
loss and an unit time cost is included in the loss. Some optimal Bayes solutions are tabulated
and some numerical comparisons between the proposed plan and a known plan under special
loss are also made. It is shown that the optimal solutions of the known plan are not Bayes in
general.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Optimal sampling plan is one of the main research topics in quality control. Ba-
sically, there are two kinds of sampling plans, sampling for inspection by attributes
and by variables. Many schemes such as the producer’s and consumer’s risk point
schemes, defence sampling schemes, Dodge and Romig’s schemes, and decision theo-
retic schemes have been proposed and studied, and they are used to choose a single
sampling plan (see e.g. Wetherill, 1977). From the economical point of view, the de-
cision theoretic schemes are considered to be more scienti>c and are therefore widely
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Table 1
Under FCT, optimal solutions (nB1 ; �B1 ) and its Bayes risks

� nB1 D∗
n (m) r(nB1 ; �B1 ) � nB1 D∗

n (m) r(nB1 ; �B1 )

1.5 4 1.9407 32.1416 1.0 0 ∞ 50.0000
2.0 2 0.9368 37.3428 1.25 1 1.6868 48.4154
2.5 2 1.2717 42.0310 1.5 3 2.7749 48.3673
3.0 2 1.6063 44.8481 2.0 2 1.6063 44.8481
3.5 2 1.9407 46.7695 2.5 2 1.1063 43.1733
4.0 3 2.9430 49.3019 2.75 2 0.8563 39.3675
4.5 0 ∞ 50.0000 3.0 0 0 38.3333

t nB1 D∗
n (m) r(nB1 ; �B1 ) 
 nB1 D∗

n (m) r(nB1 ; �B1 )

1.0 2 1.6063 45.8134 0.25 2 1.6063 44.8166
1.25 2 1.6063 46.0458 0.50 2 1.6063 45.7567
1.5 1 0.9368 45.8634 0.75 2 1.6063 47.9211
2.0 2 1.6063 44.8481 1.00 2 1.6063 44.8481
2.5 2 1.6063 43.7081 1.50 3 2.2749 44.8428
3.0 2 1.6063 43.2756 1.75 3 2.2749 45.0192
4.0 2 1.6063 42.7466 2.00 3 2.2749 46.0138

a0 nB1 D∗
n (m) r(nB1 ; �B1 ) a1 nB1 D∗

n (m) r(nB1 ; �B1 )

0 5 2.2158 32.4155 0 2 1.1623 41.9663
10 2 1.0689 39.8145 1 2 1.2467 43.0501
15 2 1.3066 41.7156 3 2 1.4221 43.8116
20 2 1.6063 44.8481 5 2 1.6063 44.8481
25 3 2.7425 47.1352 7 3 2.5066 46.0174
30 3 3.3935 48.3154 10 3 2.8730 46.3247
35 0 ∞ 50.0000 15 3 3.5311 48.5122

a2 nB1 D∗
n (m) r(nB1 ; �B1 ) C1 nB1 D∗

n (m) r(nB1 ; �B1 )

4 0 0.00 39.0000 0.1 3 2.2749 41.5121
6 5 2.5195 41.3122 0.2 3 2.2749 41.8121
8 2 1.2756 43.7820 0.4 3 2.2749 42.4121
10 2 1.6063 44.8481 0.5 2 1.6063 44.8481
12 3 2.6292 46.1724 0.6 2 1.6063 45.0481
15 3 3.1098 47.0937 0.8 2 1.6063 45.4481
20 1 2.0000 48.5000 1.0 2 1.6063 45.8491

C2 nB1 D∗
n (m) r(nB1 ; �B1 ) C3 nB1 D∗

n (m) r(nB1 ; �B1 )

0.1 3 2.2749 42.9141 35 0 ∞ 35.0000
0.2 3 2.2749 43.1654 40 3 3.3935 38.3154
0.4 3 2.2749 43.8762 45 3 2.7425 42.2593
0.5 2 1.6063 44.8481 50 2 1.6063 44.5118
0.6 3 1.6063 45.3412 55 2 1.3066 46.7166
0.8 2 0.9368 45.5788 60 2 1.0689 49.9954
1.0 2 2.6292 46.1455 70 5 2.2158 52.3851
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Table 2
Under t-FCT, optimal solutions (nB2 ; tB2 ; �B2 ) and its Bayes risks

� nB2 tB2 D∗
n (m) r(nB2 ; �B2 ) � nB2 tB2 D∗

n (m) r(nB2 ; �B2 )

1.5 1 1.8508 0.0712 31.6250 1.0 0 1 ∞ 50.0000
2.0 2 1.6225 0.2656 37.2154 1.25 1 1.0125 1.6868 47.8006
2.5 2 1.2658 0.6014 41.3250 1.5 3 1.4025 1.4368 46.5411
3.0 2 1.6758 0.9368 44.3211 2.0 2 1.6758 0.9368 44.3211
3.5 2 1.9775 1.2717 45.7145 2.5 2 1.6775 0.4368 42.3185
4.0 2 1.6742 1.6063 48.2145 2.75 2 1.4525 0.1838 38.8169
4.5 0 2.0000 ∞ 50.0000 3.0 0 2.0000 0.0000 38.3333

a0 nB2 tB2 D∗
n (m) r(nB2 ; �B2 ) a1 nB2 tB2 D∗

n (m) r(nB2 ; �B2 )

0 4 1.8258 0.2100 31.8214 0 2 1.6475 0.5820 41.0217
10 2 1.6225 0.5000 39.0172 1 2 1.8258 0.6495 43.5145
15 2 1.6608 0.6932 41.4187 3 1 1.4092 0.7897 43.1167
20 2 1.6758 0.9368 44.3211 5 2 1.6758 0.9368 44.3211
25 3 1.9758 1.2566 46.1342 7 1 1.6475 1.0905 46.0123
30 3 1.6225 1.7016 47.7451 10 1 1.6042 1.3333 46.6012
35 0 2.0000 ∞ 50.0000 15 1 1.4358 1.7689 48.0122

a3 nB2 tB2 D∗
n (m) r(nB2 ; �B2 ) C1 nB2 tB2 D∗

n (m) r(nB2 ; �B2 )

4 0 2.0000 0.0000 39.0000 0.1 1 1.8242 1.6063 41.7052
6 1 1.5675 0.3609 42.0124 0.2 1 1.8242 1.6063 41.8752
8 1 1.8258 0.6667 43.9991 0.4 1 1.8242 1.6063 42.0752
10 2 1.6758 0.9368 44.3211 0.5 2 1.6758 0.9368 44.3211
12 1 1.4042 1.1813 46.2417 0.6 2 1.6758 0.9368 44.5211
15 1 1.5325 1.5131 47.2915 0.8 2 1.6758 0.9368 44.9211
20 1 1.6275 2.0000 48.0122 1.0 2 1.6758 0.9368 45.3211

C2 nB2 tB2 D∗
n (m) r(nB2 ; �B2 ) C3 nB2 tB2 D∗

n (m) r(nB2 ; �B2 )

0.1 3 1.5675 1.6063 42.3151 35 0 2.0000 ∞ 35.0000
0.2 3 1.8242 1.6063 42.8023 40 3 1.8425 1.7016 37.9142
0.4 3 1.3258 1.6063 43.6112 45 3 1.6525 1.2566 40.5121
0.5 2 1.6758 0.9368 44.3211 50 2 1.6758 0.9368 44.3211
0.6 2 1.4058 0.9368 44.7152 55 2 1.4092 0.6932 46.4451
0.8 2 1.9792 0.9368 45.0123 60 2 1.8592 0.5000 49.4132
1.0 2 1.5442 0.9368 45.5214 70 5 1.9942 0.2100 51.7812

employed by many statisticians. Wetherill and Campling (1966) and KFollerstrFom and
Wetherill (1981) applied this approach and considered the utility function for sam-
pling plans by attributes as well as by variables. Fertig and Mann (1974), Hald (1967,
1981) and Wetherill and KFollerstrFom (1979) investigated the asymptotic results of the
sampling plans. However, in these papers, they dealt with linear loss function and so
the sample size obtained by the proposed optimal sampling plan was usually not an
integer. Lam (1988a, b, 1994) and Lam and Lau (1993) developed some models and
studied some optimal sampling plans for polynomial loss and derived explicit forms of
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Table 3
Under 
-FCT, optimal solutions (nB3 ; 
B3 ; �B3 ) and its Bayes risks

� nB3 
B3 D∗
n (m) r(nB3 ; �B3 ) � nB3 
B3 D∗

n (m) r(nB3 ; �B3 )

1.5 3 0.8122 0.0712 30.8142 1.0 0 1.0000 ∞ 50.0000
2.0 2 0.4158 0.2656 36.8241 1.25 1 0.1595 1.6868 48.7084
2.5 2 0.3266 0.6014 40.7512 1.5 3 0.3278 2.7749 48.3723
3.0 2 0.2500 0.9368 44.3012 2.0 2 0.2500 0.9368 44.3012
3.5 2 0.4266 1.2717 44.6145 2.5 2 0.5125 1.1063 43.4753
4.0 3 0.3311 1.6063 47.7021 2.75 2 0.4454 0.8563 39.3154
4.5 0 1.0000 ∞ 50.0000 3.0 0 1.0000 0.0000 38.3333

a0 nB3 
B3 D∗
n (m) r(nB3 ; �B3 ) a1 nB3 
B3 D∗

n (m) r(nB3 ; �B3 )

0 4 0.3215 0.2100 30.9549 0 2 0.1648 1.1623 41.0122
10 2 0.4215 0.5000 37.8145 1 2 0.1587 1.2467 43.5014
15 2 0.1455 0.6932 39.7168 3 2 0.3214 1.4221 42.5725
20 2 0.2500 0.9368 44.3012 5 2 0.2500 0.9368 44.3012
25 3 0.2215 1.2566 44.7544 7 3 0.5416 2.5066 45.8525
30 3 0.3248 1.7016 46.1067 10 3 0.3123 2.8730 46.2871
35 0 1.0000 ∞ 50.0000 15 3 0.3225 3.5311 47.7141

a2 nB3 
B3 D∗
n (m) r(nB3 ; �B3 ) C1 nB3 
B3 D∗

n (m) r(nB3 ; �B3 )

4 0 0.1655 0.0000 39.0000 0.1 3 0.4015 1.1813 40.8854
6 3 0.3845 0.3609 41.6511 0.2 3 0.1254 1.1813 41.1854
8 2 0.2154 0.6667 43.5674 0.4 3 0.2255 1.1813 41.7854
10 2 0.2500 0.9368 44.3012 0.5 2 0.2500 0.9368 44.3012
12 3 0.4152 1.1813 45.8121 0.6 2 0.2415 0.9368 44.5012
15 3 0.3211 1.5131 47.0011 0.8 2 0.4332 0.9368 44.9012
20 1 0.5105 2.0000 47.6152 1.0 2 0.2155 0.9368 45.3012

C2 nB3 
B3 D∗
n (m) r(nB3 ; �B3 ) C3 nB3 
B3 D∗

n (m) r(nB3 ; �B3 )

0.1 3 0.3124 1.1813 42.5123 35 0 1.0000 ∞ 35.0000
0.2 3 0.1455 1.1813 42.6521 40 3 0.3124 1.7016 37.7121
0.4 3 0.3211 1.1813 43.3215 45 3 0.4158 1.2566 41.0120
0.5 2 0.2500 0.9368 44.3012 50 2 0.2500 0.9368 44.3012
0.6 2 0.2144 1.6063 44.6241 55 2 0.4011 0.6932 46.8158
0.8 2 0.2255 1.2717 45.0003 60 2 0.2175 0.5000 49.8514
1.0 2 0.4215 1.7016 45.4192 70 5 0.1256 0.2100 51.6074

the Bayes risks. Therefore, an optimal plan with an integer-valued sample size can be
obtained within >nite-step of searching.

In testing lifetimes of electronics or testing survival times of patients who suHer from
serious diseases, measurements are usually censored. Usually, there are three kinds
of censoring. Type II censoring is generally used when items in a large batch are
sophisticated and/or expensive. In this case, inspection terminates when a pre-assigned
number of defective items have been found in a >xed size sample. However, Type I
censoring is employed if the inspection cost increases heavily with time. Life times
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Table 4
Under FUCT, optimal solutions (nB4 ; tB4 ; 
B4 ; �B4 ) and its Bayes risks

� nB4n tB4 
B4 D∗
n (m) r(nB4 ; �B4 ) � nB4 tB4 
B4 D∗

n (m) r(nB4 ; �B4 )

1.5 1 1.8592 0.2512 0.0712 30.3022 1.0 0 2.0000 1.0000 ∞ 50.0000
2.0 2 1.6225 0.4545 0.2656 35.3618 1.25 1 1.5242 0.1255 2.3563 45.1243
2.5 2 1.5675 0.1244 0.6014 39.3214 1.5 3 1.6225 0.4585 2.1063 44.5124
3.0 2 1.6642 0.2452 1.6063 43.8715 2.0 2 1.6642 0.2452 1.6063 43.8715
3.5 2 1.9758 0.4518 1.2717 43.5541 2.5 2 1.4042 0.4031 0.4368 40.0614
4.0 2 1.8258 0.3213 1.6063 47.2132 2.75 2 1.1258 0.1175 0.1868 38.4152
4.5 0 2.0000 1.0000 ∞ 50.0000 3.0 0 2.0000 1.0000 0.0000 38.3333

a0 nB4 tB4 
B4 D∗
n (m) r(nB4 ; �B4 ) a1 nB4 tB4 
B4 D∗

n (m) r(nB4 ; �B4 )

0 2 1.5358 0.4215 0.7122 30.0685 0 2 1.9758 0.2515 1.1623 40.0121
10 2 1.8258 0.2578 1.0689 37.7214 1 2 1.6742 0.1145 1.2467 41.9452
15 2 1.7025 0.0125 1.6066 40.3965 3 2 1.9875 0.4453 1.4221 41.6701
20 2 1.6642 0.2452 1.6063 43.8715 5 2 1.6642 0.2452 1.6063 44.1308
25 2 1.7458 0.7127 2.0000 44.8451 7 2 1.7008 0.3325 1.7990 44.8451
30 2 1.6225 0.3452 2.5481 47.6452 10 2 1.6708 0.0250 2.1036 46.5141
35 0 2.0000 1.0000 ∞ 50.0000 15 2 1.8525 0.1783 2.6504 47.5142

a2 nB4 tB4 
B4 D∗
n (m) r(nB4 ; �B4 ) C1 nB4 tB4 
B4 D∗

n (m) r(nB4 ; �B4 )

4 0 2.0000 1.0000 0.0000 39.0000 0.1 2 1.5125 0.2245 1.2717 40.6128
6 2 1.6575 0.3323 0.9013 41.1421 0.2 2 1.5125 0.2245 1.2717 40.8128
8 2 1.6025 0.2038 1.2756 43.1384 0.4 2 1.5125 0.2245 1.2717 41.2128
10 2 1.6642 0.2452 1.6063 43.8715 0.5 2 1.6642 0.2452 1.6063 43.8715
12 2 1.9242 0.4213 1.9057 45.6877 0.6 2 1.6642 0.2452 1.6063 44.0715
15 2 1.7375 0.2150 2.3120 46.8515 0.8 2 1.6642 0.2452 1.6063 44.4715
20 2 1.9025 0.3867 2.9082 47.3123 1.0 2 1.6642 0.2452 1.6063 44.8715

C2 nB4 tB4 
B4 D∗
n (m) r(nB4 ; �B4 ) C3 nB4 tB4 
B4 D∗

n (m) r(nB4 ; �B4 )

0.1 2 1.6025 0.4257 1.6063 42.3612 35 0 2.0000 1.0000 ∞ 35.0000
0.2 2 1.8508 0.3125 1.6063 42.5545 40 2 1.4542 0.3242 2.5481 37.5052
0.4 2 1.4225 0.1122 1.6063 43.0134 45 2 1.7275 0.2144 2.0000 39.8714
0.5 2 1.6642 0.2452 1.6063 43.8715 50 2 1.6642 0.2452 1.6063 43.8715
0.6 2 1.6325 0.1158 1.6063 44.5128 55 2 1.5875 0.4215 1.3066 46.2154
0.8 2 1.8525 0.3245 1.6063 44.5712 60 2 1.8875 0.2565 1.0689 48.6542
1.0 2 1.6292 0.2454 1.6063 44.9019 70 2 1.6725 0.1187 0.7122 51.2566

of items in the sample survive beyond a pre-assigned time t are censored. For other
situations, the lifetime of an item may simultaneously be aHected by an extraneous
factor. For example, a group of patients who suHer from both disease A and disease B
are given a new drug which is claimed to be a new treatment for disease A. The lifetime
of each participating patient is reported and recorded. For each patient, a censoring time
is assigned which corresponds to the survival time of disease B for the patient. These
censoring times are assumed to be identically and independently distributed (IID) with
known distribution and hence for this case random censoring is used.
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Table 5
Under FCT, optimal solutions (n0; T0) and its Bayes risks of Lam and Choy (1995) and (nB1 ; �B1 ) with
C2 = 0

� n0 T0 r(n0; T0) nB1 D∗
n (m) r(nB1 ; �B1 )

1.5 0 0.0000 33.1250 4 1.9407 31.2416
2.0 3 0.5400 38.3390 2 0.9368 36.5095
2.5 4 0.6600 42.5279 2 1.2717 41.1977
3.0 4 0.7400 45.8851 2 1.6063 44.0148
3.5 3 0.9200 48.3002 2 1.9407 45.9362
4.0 1 1.6000 49.7467 3 2.9430 48.4269
4.5 0 ∞ 50.0000 0 ∞ 50.0000

� n0 T0 r(n0; T0) nB1 D∗
n (m) r(nB1 ; �B1 )

1.00 0 ∞ 50.0000 0 ∞ 50.0000
1.25 1 1.6800 49.8150 1 1.6868 47.6654
1.50 3 1.0200 48.8.95 3 2.7749 47.4923
2.00 4 0.7400 45.8851 2 1.6063 44.0148
2.50 4 0.6800 44.1469 2 1.1063 42.3400
2.75 3 0.5000 40.5323 2 0.8563 38.5342
3.00 0 0 38.3333 0 0.0000 38.3333

In this paper, our goal is to seek an optimal sampling plan (nB; �B) possessing the
property that the risk r(nB; �B)=inf r(n; �) among the class of all sampling plans (n; �)
based on data which are uniformly random censored. We set up a decision-theoretic
formulation of the problem of acceptance sampling in Section 2. A Bayesian sampling
plan is derived. In Section 3, a special case where h(�)=a0 +a1�+a2�2 is considered.
We provide an explicit presentation of the Bayes risk of a sampling plan r(n; �B( | n)).
Based on this expression, a numerical approximation for >nding the optimal sample size
nB and the optimal decision rule is proposed. In Section 4, an algorithm for determining
the optimal sampling plan (nB; �B) is given and some numerical results related to
optimal sampling plans are tabulated (Tables 1–4). Under special loss function, some
numerical comparisons of Bayes risks between the proposed optimal sampling plan and
that of Lam and Choy (1995) are also studied (Table 5).

2. Formulation of the model and a Bayes solution

Let X denote the lifetime of an item in a batch of size N . Assume that X has
an exponential distribution Exp(�) with density function f(x|�) = �e−�x for x¿ 0
and 0 otherwise. Here the scale parameter � is unknown; however, we assume it
follows a conjugate Gamma prior distribution �(�; �) with density function g(�) =
����−1e−��=�(�) for �¿ 0 and 0 otherwise, where � and � are known.

In designing a sampling scheme, a random sample X = (X1; : : : Xn) of >xed size n
is taken from the batch for testing. Assume that random censoring is adopted. Let the
censoring times Y1; : : : ; Yn be IID random variables associated with the true lifetime
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X1; : : : ; Xn, respectively. Suppose the Yi’s and Xi’s are independent and Yi (i = 1; : : : ; n)
is uniformly distributed over an interval [t − 
; t] with known t¿ 
¿ 0. This kind
of random censoring is commonly used in practical applications. As Ebrahimi and
Habibullah (1992) have pointed out, in most clinical trials, with staggered entries over
an initial period (0; 
) for accrual, and with analysis at some time t ¿ 
, it is realistic
to assume that the censoring time Yi associated with Xi is uniformly distributed on
[t − 
; t].

Following the usual notation, the observable data are given by the pair (Zi; �i); i =
1; : : : ; n, where

Zi = min(Xi; Yi) = Xi ∧ Yi

and

�i = I(Xi6Yi) =

{
1 if Xi6Yi;

0 if Xi ¿Yi:
(2.1)

It is readily seen that when 
 → 0, the uniform random censoring becomes the usual
Type I censoring. Accordingly, the model under consideration is an extension of that
of the Type I censoring model.

Let M denote the number of failures by time t, i.e. M =
∑n

i=1 �i, then M follows
a binomial distribution B(n; p) where

p = Pr(Xi6Yi|�) = 1 − 1
�


{exp[ − �(t − 
)] − exp(−�t)}:

For the >xed sample size n and the censoring time t, given M = m, let Z∼
(N ) =

(Z1; 1; Z2; 1; : : : ; Zm; 1; Zm+1; 0; : : : ; Zn; 0) be the observable lifetimes of the M failed com-
ponents. Then, given �, the joint density function of (Z∼

(N ); M) is given by

f(z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0;m|�)

=




(
n

m

)
n∏

i=1

f(zi; �i) 06 zi6 t; for i = 1; : : : ; m; or

t − 
6 zi6 t; i = m + 1; : : : ; n;

0 otherwise;

(2.2)

where

f(z; �) =




� exp(− �z); 06 z ¡ t − 
; � = 1;

exp(− �z)=
; t − 
6 z6 t; � = 0;

� exp(−�z)(t − z)=
; t − 
6 z6 t; � = 1:

(2.3)
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Therefore, (2.2) becomes

f(z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0;m|�)

=




(
n

m

)
�m exp(−�z(n))

m∏
i=1

{
t − zi



∧ 1
}(

1



)n−m

06 zi6 t; for i = 1; : : : ; m; or

t − 
6 zi6 t; i = m + 1; : : : ; n;

0 otherwise;

(2.4)

where z(n) =
∑n

i=1 zi; (n − m)(t − 
)6
∑n

i=1 zi6 nt.
Note that (z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0; M) are suOcient for �. It is assumed that

the parameter � is a realization of a positive random variable ", having a prior den-
sity g(�) over (0;∞). Therefore, the marginal joint probability density function of
(Z∼

(N ); M) is

f(z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0; m)

=
∫ ∞

0
f(z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0; m|�)g(�) d�

=

(
n

m

) ∫ ∞

0
�m exp

(
−�

i∑
i=1

zi

)
m∏

i=1

{
t − zi



∧ 1
}(

1



)n−m

g(�) d�: (2.5)

The posterior probability density of � given (Z∼
(N ); M) = (z∼(n); m) is then given by

g(�|z∼(n); m) =
f(z∼(n); m | �)g(�)

f(z∼(n); m)

=
�m exp

{−�
∑n

i=1 zi
}

g(�)∫∞
0 �m exp

{−�
∑n

i=1 zi
}
g(�) d�

: (2.6)

Lam and Choy (1995) have considered the same problem through a Bayesian setup.
They derived a Bayesian sampling plan based on a special decision function which is
de>ned in terms of the MLE #̂ of #. Theoretically, since it has not been con>rmed
that the associated risk attains the in>mum over all reasonable decision functions, their
derived optimal plan is not assured to be a real Bayesian solution. As a matter of
fact, their optimal solution is not Bayes which can be con>rmed by (3.3) in the next
section. This is also shown by some numerical comparisons of risks tabulated in Table
5 in Section 4.
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In many life testing situations or clinical trials, it often takes a long time to observe
complete life times. This is quite undesirable or even impossible due to various restric-
tions on the experiment, for instance, budget restrictions. Therefore, it is desirable to
have the experiment terminated as soon as the accumulated data is suOcient for our
goal. In this sense, the censoring time Yi can be designed according to some criterion.
We consider four situations for the design of Yi in our paper.

In some situation, due to some constraints or requirements, the parameters t and

 in uniform distribution U(t − 
; t) are both >xed. We call this situation the >xed
censoring time (FCT). This case has been studied in Lam and Choy (1995). For the
second situation, the parameter 
 is >xed, however, another parameter t is allowed to
be chosen case by case for the bene>t of some purpose. For this model, we call it the
t-Qexible censoring time (t-FCT). On the other hand, in some situation, the parameter
t is >xed and 
 is allowed to be Qexible. As is well-known, when 
 is restricted to be
small, this censoring model is close to Type I censoring. For this case it is called the

-Qexible censoring time (
-FCT).

Finally, when the experiment is very Qexible in determining its censoring time, it
is permitted that both t and 
 can be chosen by experimenter before the experiment
starts. For this censoring scheme, we call it a Qexible uniform censoring time (FUCT).

In this paper, we derive the Bayesian sampling plan under various situations of
censoring time. Obviously, for the cases of t-FCT, 
-FCT and FUCT, they are not
studied in Lam and Choy (1995). In the problem formulation, we consider an important
factor of time in our loss function. Under this situation, the censoring schemes t-FCT
and FUCT are rather signi>cant and important in the sampling plans.

Suppose that a batch of lifetime components is presented for acceptance sampling.
Let a denote an action on this problem of acceptance sampling. When a = 1, it means
that the batch is accepted; and when a=0, the batch is to be rejected. For given sample
size n, censoring time Y∼

= (Y1; Y2; : : : ; Yn) and parameter �, when action a is taken, the

loss is de>ned as follows:

L(a; �; n) = ah(�) + (1 − a)C3 + nC1 + max
16i6n

YiC2; (2.7)

where C1; C2 and C3 are all positive constants, and they denote, respectively, the cost
per item inspected, the cost per unit time used for test and the loss due to rejecting the
batch, and h(�) denotes the loss of accepting the batch. Since # = �−1 is the expected
lifetime, and a larger � indicates a smaller #, so, usually, we require h(�) to be positive
and increasing in � for �¿ 0. Also, to ensure the Bayes risk to be >nite, it is assumed
that

∫∞
0 h(�)g(�) d�¡∞.

It should be emphasized that the cost C2 for unit time in loss L(a; �; n) is an im-
portant term to be considered since it is closely related to random censoring scheme
and thus it controls the total length of time of items inspection. Due to budget restric-
tions or some constraint on the experiment, practically it is necessary to consider cost
of time.

Using the loss L(a; �; n) and applying some conditioning technique, the Bayes risk of
a sampling plan (n; �) can be computed and decomposed in the following
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form:

r(n; �) = EY∼

(
max

16i6n
Yi

)
C2

+E"EZ∼
(N );M |"{nC1 + C3 + �(Z∼

(N ); M |n)[h(") − C3]}

=
(
t − 


n + 1

)
C2 + nC1 + C3 + r1(�|n); (2.8)

where

r1(� | n) = E"EZ∼
(N );M | "{�(Z∼

(N ); M | n)[h(") − C3]}

= EZ∼
(N );ME"|Z∼(N );M{�(Z∼

(N ); M | n)[h(") − C3]}

=
n∑

m=0

∫
: : :
z
∼(n)

∫
�(z∼(n); m | n){E"| z∼(n);m[h(") − C3]}

f(z∼(n); m) d z
∼(n) (2.9)

and

E"| z∼(n);m[h(") − C3] =
∫ ∞

0
h(�)g(� | z∼(n); m) d� − C3

= ’g(z(n); m) − C3; (2.10)

where ’g(z(n); m) =
∫∞

0 h(�)g(� | z∼(n); m) d�, the posterior expectation of h(") given

(Z∼
(N ); M) = (z∼(n); m).

Therefore, for a >xed sample size n, given parameters t and 
 in uniform censor-
ing, the Bayes decision function �B( | n), which minimizes r1(� | n) among all decision
functions �( | n) is given by

�B(z∼(n); m|n) =

{
1 if ’g(z(n); m)6C3;

0 otherwise:
(2.11)

Next, we investigate some monotonicity properties of the Bayes decision function
�B( | n) with n >xed. Main property of �B(·) de>ned by (2.11) is given by (b) of the
following Theorem 2.1.

Lemma 2.1. Let 06m∗; m6 n and z = z(n) associated with m de8ned by (2.4),
z∗ = z(n) associated with m∗. Consider the likelihood ratio

‘(�|(z; m); (z∗; m∗)) = g(�|z∗; m∗)=g(�|z; m) if g(�|z; m) 	= 0:

The following holds.

(a) If m = m∗ and z ¡ z∗, then ‘(�|(z; m); (z∗m∗)) is nonincreasing in �.
(b) If z = z∗ and m¡m∗, then ‘(�|(z; m); (z∗m∗)) is nondecreasing in �.
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Proof. The proof is straightforward, so we omit the proof.

From the above fact, we can conclude the following result.

Theorem 2.1. Let h(�) be a positive and increasing function of � for �¿ 0. Then,

(a) ’g(z; m) =
∫∞

0 h(�)g(�|z; m) d� is nonincreasing in z and nondecreasing in m.
(b) �B(z∼(n); m|n) is nondecreasing in z(n) and nonincreasing in m.

Proof. It follows from Lemma 2.1 that the conditional density g(�; z1; m) is a family
of densities with monotone likelihood ratio in � considering m as a parameter. Then, if
h(�) is nondecreasing in �, E�h(�) = ’g(z; m) is nondecreasing in m (see, for example
Lehmann, 1959, p. 74). The same method can be used to show that ’g(z; m) is also
nonincreasing in z. This shows (a).

(b) follows directly from (a) using (2.11).
For >xed n, since �B(z(n); m|n) is nondecreasing in z(n), it is to be noted that

a bigger value of z(n) leads to a bigger value of �(·) and thus it results a bigger
probability for accepting the batch.

2.1. Derivation of a Bayesian sampling plan

To derive a Bayesian sampling plan under various situations, the following schemes
are proposed.

(A) Both t and 
 are pre8xed (FCT )
Scheme A1.
Step 1: For >xed n, derive the decision function �B1(n), which minimizes r1(�B1 |n)

(de>ned by (2.10) and (2.11)) among all the decision function �. So, �B1(n) satis>es
r1(�B1 |n) = inf{r1(�|n)}.
Step 2: Find the sample size nB1 which minimizes r(n; �B1(|n)) (de>ned by (2.9))

among all n = 0; 1; 2; : : : :
Then, (nB1 ; �B1) is our Bayes solution.
(B) 
 is pre8xed and t is <exible (t-FCT)
Scheme A2.
Step 1: For >xed (n; t), derive the decision function �B2( |n) to minimize the risks

r1(�|n) among all decision functions �( |n).
Step 2: For >xed n, derive the censoring time tB2(n), which minimizes (t−
=(n+1))

C2 +r1(�B2 |n) among t ¿ 0. That is, tB2(n) satis>es (tB2(n)−
=(n+1))C2 +r1(�B2 |n)=
inf t¿
 {(t − 
=(n + 1))C2 + r1(�B2 |n)}.
Step 3: Find the sample size nB2 which minimizes r(n; �B2(|n)) among all n =

0; 1; 2; : : : :
Then, (nB2 ; tB2(nB2); �B2) is our Bayes solution.
(C) t is pre8xed and 
 is <exible (
-FCT)
Scheme A3.
Step 1: For >xed (n; 
), derive the decision function �B3( |n) to minimize the risks

r1(�|n) among all decision functions �( |n).
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Step 2: For >xed n, derive 
B3(n), which minimizes (t − 
=(n + 1))C2 + r1(�B3( |n))
among t¿ 
¿ 0: That is, 
B3(n) satis>es (t−
B3(n)=(n+1))C2+r1(�B3 |n)=inf 0¡
6t{(t−

=(n + 1))C2 + r1(�B3 |n)}.
Step 3: Find the sample size nB3 which minimizes r(n; �B3( |n)) among all n =

0; 1; 2; : : : :
So, (nB3 ; 
B3(nB3); �B3) is our Bayes solution.
(D) Both t and 
 are <exible (FUCT)
Scheme A4.
Step 1: For >xed (n; t; 
), derive the decision function �B4( |n) to minimize the risks

r1(�|n) among all decision functions �( |n).
Step 2: For >xed n, derive tB4(n) and 
B4(n) (0¡
B4(n)6 tB4(n)) which minimize

(t−
=(n+1))C2 +r1(�B|n) among t¿ 
¿ 0. That is, tB4(n) and 
B4(n) satisfy (tB4(n)−
1=(n + 1)
B4(n))C2 + r1(�B4 |n) = inf 0¡
6t {(t − 
=(n + 1))C2 + r1(�B4 |n)}.

Step 3: Find the sample size nB4 which minimizes r(n; �B4(|n)) among all n =
0; 1; 2; : : : :

Then, (nB4 ; tB4(nB4); 
B4(nB4); �B4) is our Bayes solution.
All the sampling plans derived through the Schemes A1–A4, respectively, possess

the following optimality property.

Theorem 2.2. Sampling plans (nB1 ; �B1) for the case FCT, (nB2 ; tB2(nB2); �B2) for t-FCT,
(nB3 ; 
B3(nB3); �B3) for 
-FCT and (nB4 ; tB4(nB4); 
B4(nB4); �B4) for FUCT are Bayes sam-
pling plans in the sense that each of them attains inf r(n; �) among the class of all
sampling plans for each situation.

Proof. Since proof for each situation in analogous, we consider here the case of
FUCT.

For any sampling plan (n; t; 
; �), we use r(n; t; 
; �) to denote its risk. Then, we
have

r(n; t; 
; �) − r(nB4 ; tB4(nB4); 
B4(nB4); �B4)

= r(n; t; 
; �) − r(n; t; 
; �B4) + r(n; t; 
; �B4) − r(n; tB4(n); 
B4(n); �B4)

+ r(n; tB4(n); 
B4(n); �B4) − r(nB4 ; tB4(nB4); 
B4(nB4); �B4): (2.12)

According to our derivations in Scheme A4, it follows that

r(n; t; 
; �) − r(n; t; 
; �B4)¿ 0;

r(n; t; 
; �B4) − r(n; tB4(n); 
B4(n); �B4)¿ 0;

r(n; tB4(n); 
B4(n); �B4) − r(nB4 ; tB4(nB4); 
B4(nB4); �B4)¿ 0: (2.13)

This proves the theorem.

The following result guarantees the >niteness of the optimal sample size nBi for all
cases of i = 1; 2; 3; 4.



W.-T. Huang, Y.-P. Lin / Computational Statistics & Data Analysis 44 (2004) 669–691 681

Theorem 2.3. Let nBi be the optimal sample size derived respectively through Scheme
A1 previously de8ned, i = 1; 2; 3; 4. Then,

nBi 6min
(

’g(0; 0)
C1

;
C3

C1

)
+

C2

C1
for i = 1; 2; 3; 4

and

tBi 6min
(

’g(0; 0)
C2

;
C3

C2

)
+ 2 for i = 2; 4;

where ’g(0; 0) =
∫∞

0 h(�)g(�) d�¡∞ by assumption.

Proof. Let (0; �B( |0)) denote the sampling plan for which no data is observed. Ac-
cording to (2.11),

�B( |0) =

{
1 if ’g(0; 0)6C3;

0 otherwise:

Consider the situation that both t and 
 are pre>xed. Then, according to (2.8)
r(0; �B)=(t − 
)C2 +C3 + r1(�B|0). Since �B( |0)=1(’g(0;0)6C3), hence, C3 + r1(�B|n)=
min(’g(0; 0); C3) according to (2.9) and (2.10). Thus, r(0; �B)=(t−
)C2+min(’g(0; 0);
C3). Again, since �B1 is a Bayes solution, r(nB1 ; �B1)6 r(0; �B), i.e. (t − (
=nB1 +
1))C2 + nB1C1 + C3 + r1(�B1 |nB1)6 (t − 
)C2 + min(’g(0; 0); C3), we have nB1C1 +
C3 + r1(�B1 |nB1)6min(’g(0; 0); C3) because nB1 ¿ 0 and (
=nB + 1)6 
. Now, since
C3¿ 0 and r1(�B1 |nB1)¿ 0, hence, nB1 6min(’g(0; 0)=C1; C3=C1).

If both t and 
 are Qexible, take any t and 
 such that t − 
 = 1. Then, r(0; �B) =
C2 + min(’g(0; 0); C3). Again, since r(nB4 ; �B4)6 r(0; �B), we have (tB4 − (
B4 =nB4 +
1))C2 + nB4 C1 + C3 + r1(�B4 |nB4)6C2 + min(’g(0; 0); C3). So,

tB4C26 2C2 + min(’g(0; 0); C3)

or

tB4 6 2 + min
(

’g(0; 0)
C2

;
C3

C2

)
:

Also,

nB4C1 + C3 + r1(�B4 |nB4)6min(’g(0; 0); C3) if tB4 − 
B4

nB4 + 1
¿ 1;

and

nB4C1 + C3 + r1(�B4 |nB4)6min(’g(0; 0); C3) + C2 if tB4 − 
B4

nB4 + 1
¡ 1:

In both cases, we can conclude that

nB4 6min
(

’g(0; 0)
C1

;
C3

C1

)
+

C2

C1
:

Same conclusion can be obtained for other situations by analogous argument. So the
proof is complete.
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It is to be noted that nBi and tBi are always >nite, therefore in a >nite steps through
Schemes A1 previously de>ned, it is guaranteed that a Bayes solution �i(·) can always
be obtained for i = 1; 2; 3; 4.

3. Bayes sampling plan for quadratic loss

To obtain the Bayesian sampling plan (nBi ; �Bi) for nonlinear loss, for simplicity, we
assume h(�) to be a quadratic function h(�) = a0 + a1� + a2�2 where a0; a1 and a2

are all positive coeOcients. Follow same assumption that prior distribution for scale
parameter � is a �(�; �) distribution.

A straightforward computation shows that for given (Z∼
(N ); M) = (z∼(n); m), the pos-

terior probability density of " is then

g(�|z(n); m) ∼ �(m + �; z(n) + �):

We have

’g(z(n); m) =
∫ ∞

0
h(�) g(�|z(n); m) d�

= a0 +
a1(m + �)
z(n) + �

+
a2(m + �)(m + � + 1)

[z(n) + �]2 ; (3.1)

and

�Bi(z∼(n); m|n) =

{
1 if ’g(z(n); m)6C3;

0 otherwise:
(3.2)

Note that if C36 a0, then ’g(z(n); m)¿C3 for all (z∼(n); m). Therefore �Bi(z∼(n); m|n)

≡ 0. To avoid this extreme case, we assume that C3 ¿a0.
From (3.1) and (3.2) it follows that �Bi(z∼(n); m|n) = 1 if, and only if,

(C3 − a0)[z(n) + �]2 − a1(m + �)[z(n) + �] − a2(m + �)(m + � + 1)¿ 0;

which is equivalent to

z(n) + �¿
a1(m + �) +

√
a2

1(m + �)2 + 4(C3 − a0)a2(m + �)(m + � + 1)
2(C3 − a0)

≡ Dn(m)

say.
Thus, the Bayes decision function �Bi( |n) can be expressed as

�Bi(z∼(n); m|n) =

{
1 if z(n)¿D∗

n (m);

0 otherwise;
(3.3)

where D∗
n (m) = Dn(m) − �.
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In the following it is desired to compute the Bayes risk associated with the Bayes
decision given by (3.3). This Bayes risk will be derived and decomposed in four parts
and each part is presented explicitly through (3.8) – (3.10).

Let )1 = Eg["], )2 = Eg["2]. Thus,
∫∞

0 h(�)g(�) d� = a0 + a1)1 + a2)2.
Also, let

*m(n; �) =


(z1; : : : ; zn) | 06 zi6 zj; i = 1; : : : ; m; t − 
6 zj6 t;

j = m + 1; : : : ; n;
n∑

j=1

zj ¡D∗
n (m)


 ;

and

H (m; n; �) =
∫

· · ·
*m(n;�)

∫
�m exp

(
−�

n∑
i=1

zi

)
m∏

i=1

{
t − zi



∧ 1
}

dz1 · · · dzm:

The Bayes risk for the sampling plan (n; �Bi(|n)) due to (2.8) can be computed as
following and it >nally can be decomposed into four exclusive parts.

r(n; �Bi) = nC1 +
(
t − 


n + 1

)
C2 +

∫ ∞

0
h(�)g(�) d�

+E{[C3 − h(")][1 − �Bi(Z∼
(N ); M |n)]}

= nC1 +
(
t − 


n + 1

)
C2 + a0 + a1)1 + a2)2

+
∫ ∞

0
[C3 − h(�)]P{�Bi(Z∼

(N ); M |n) = 0|�}g(�) d�; (3.4)

where

P{�Bi(Z∼
(N ); M |n) = 0|�} = P




N∑
j=1

Zj ¡Dn(M) − �|�



= P{M = 0|�} I(nt ¡Dn(0) − �)

+
n∑

m=1

∫
: : :

Rm(n;�)

∫ ( n

m

)
�m exp

(
−�

n∑
i=1

zi

)

m∏
i=1

{
t − zi



∧ 1
}

dz1 · · · dzm



684 W.-T. Huang, Y.-P. Lin / Computational Statistics & Data Analysis 44 (2004) 669–691

= P{M = 0|�} I(nt ¡Dn(0) − �)

+
n∑

m=1

(
n

m

)
H (m; n; �): (3.5)

In the following each component of the Bayes risk will be computed explicitly.
Let [x] denote the largest integer not exceeding x. From Theorem A.3 in the appendix

of Lam and Choy (1995), we can express

H (m; n; �)

=




0 if D∗
n (m)¡ (n − m)(t − 
);

�m

DD∗
n (m)∑

j=0

Ej;D∗
n (m)∑

k=0

(
m

j

)(
n − m + j

k

)
if (n − m)(t − 
)6D∗

n (m)

(−1)j+k


j(n + j − 1)!
=D∗

n (m)6 nt;

×
∫ D∗

n (m)−d

0
un+j−1 exp{−�(u + d)} du;

m∑
j=0

(
m

j

)
(−1)j
n−m exp{−(n − m + j)�t}

×
(

exp(�
) − 1
�


)n−m+j

if D∗
n (m)¿nt;

(3.6)

where d = (n − m + j)(t − 
) + k
; DD∗
n (m) = min{[D∗

n (m)=(t − 
)] − n + m;m}, and
Ej;D∗

n (m) = min{[D∗
n (m) − (n − m + j)(t − 
)=
]; n − m + j}.

Let In = {1; : : : ; n} and let

A ≡ A(n; t; �) = {m∈ In |D∗
n (m)¡ (n − m)(t − 
)}

B ≡ B(n; t; �) = {m∈ In | (n − m)(t − 
)¡D∗
n (m)6 nt};

C ≡ C(n; t; �) = {m∈ In |D∗
n (m)¿nt}:

By the de>nition of Dn(m), we see that both Dn(m) − � − nt and Dn(m) − � − (n −
m)(t− 
) are increasing in m for m∈ In. Suppose that A, B and C are nonempty. Then,
for any m1 in A, m2 in B and m3 in C, we must have m1 ¡m2 ¡m3. According to
(3.6), for m∈A, H (m; n; �) = 0. For m∈C,

H (m; n; �) =
m∑

j=0

(
m

j

)
(−1)j
n−m exp{−(n − m + j)�t}

(
exp(�
) − 1

�


)n−m+j

;
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and for m∈B,

H (m; n; �) = �m

DD∗
n (m)∑

j=0

Ej;D∗
n (m)∑

k=0

(
m

j

)(
n − m + j

k

)
(−1)j+k


j(n + j − 1)!

×
∫ D∗

n (m)−d

0
un+j−1 exp{−�(u + d)} du:

Therefore, the Bayes risk r(n; �Bi( |n)) can be expressed as

r(n; �Bi( |n)) =
[
nC1 +

(
t − 


n + 1

)
C2 + a0 + a1)1 + a2)2

]

+
∫ ∞

0
[C3 − h(�)]P{M = 0|�}I(nt ¡Dn(0) − �)g(�) d�

+
∑
m∈B

∫ ∞

0
[C3 − h(�)]

(
n

m

)
H (m; n; �)g(�) d�

+
∑
m∈C

∫ ∞

0
[C3 − h(�)]

(
n

m

)
H (m; n; �)g(�) d�

≡ r1 + r2 + r3 + r4; (3.7)

where r1 = nC1 + (t − 
=(n + 1))C2 + a0 + a1)1 + a2)2.
Note that P{M = 0|�} = exp{−�nt}. A straightforward computation shows that

r2 = I(nt ¡Dn(0) − �)
∫ ∞

0
[C3 − a0 − a1� − a2�2]e−�nt ����−1

�(�)
e−�� d�

= I(nt ¡Dn(0) − �)
{

(C3 − a0)��

(nt + �)�
− a1���

(nt + �)�+1 − a2�(� + 1)��

(nt + �)�+2

}
: (3.8)

Following a discussion analogous to (2.12) – (2.13) of Lam and Choy (1995), we
can obtain

r3 = E

{
(C3 − a0 − a1� − a2�2)

×
∑
m∈B

∫
· · ·
∫

f(z1; 1; : : : ; zm; 1; zm+1; 0; : : : ; zn; 0;m) dz1 · · · dzn

}

= E

{
(C3 − a0 − a1� − a2�2)

∑
m∈B

(
n

m

)
1


n−m H (m; n; �)

}
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= E


(C3 − a0 − a1� − a2�2)�m

∑
m∈B

DD∗
n (m)∑

j=0

Ej;D∗
n (m)∑

k=0

(
n

m

)(
m

j

)(
n − m + j

k

)

× (−1)j+k


n−m+j(n + j − 1)!

∫ D∗
n (m)−d

0
un+j−1 exp{−�(u + d)} du




=
∑
m∈B

DD∗
n (m)∑

j=0

Ej;D∗
n (m)∑

k=0

(
n

m

)(
m

j

)(
n − m + j

k

)
(−1)j+k��


n−m+j(n + j − 1)!�(�)

× {(C3 − a0)�(m + �)3m+� − a1�(m + � + 1)3m+�+1

− a2k�(m + � + 2)3m+�+2}; (3.9)

where d, DD∗
n (m) and Ej;D∗

n (m) are respectively de>ned in (3.6) and

3r =
∫ D∗

n (m)−d

0

un+j−1

(u + d + �)r
du =

n+j−1∑
i=0

(
n + j − 1

i

)
(−1)i(d + �)i

×
∫ D∗

n (m)−d

0
(u + d + �)n+j−i−r−1 du

for r = m + �; m + � + 1; m + � + 2.
Obviously, 3r can be integrated analytically. Moreover, analogous to (2.14) of Lam

and Choy (1995), we have

r4 =
∑
m∈C

m∑
j=0

(
n

m

)(
m

j

)
(−1)j��

�(�)

∫ ∞

0
(Cr − a0 − a1� − a2�2)��−1

×exp{−(n − m + j)�t − ��}
(

exp(�
) − 1
�


)n−m+j

d�: (3.10)

Here the value of r4 cannot be straightforwardly evaluated analytically in general
and a numerical method can be used for the computation of its value.

Combining (3.7) – (3.10), an explicit presentation of the Bayes risk of the sampling
plan (n; �) is thus derived.

It is obvious through (3.3) that, under FCT scheme and taking C2 = 0 in loss, if
optimal solution (n0; T0) of Lam and Choy (1995) is so chosen that n0 = nB1 and
T0 =D∗

n (m), then their optimal solution is a Bayes solution. However, it is readily seen
that in general their optimal solution for T0 is not D∗

n (m) given by (3.3), so it is not
Bayes.
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4. Algorithm for optimal solution

Based on the Bayes risk, a simple algorithm using following steps can be used to
obtain an optimal sampling plan. In the following we denote n∗ and t∗, respectively,
to be the upper bound of n and t for each censoring scheme. In is de>ned by (3.6).

Algprithm B.

(1) Start with n = 0, compute r(0; 0).
(2a) Censoring scheme is FCT.

For each n = 1; : : : ; n∗, compute r(n; �) and minimize r(n; �) with respect to �.
We denote the minimizer by �B1 .

(2b) Censoring scheme is t-FCT.
For each n=1; : : : ; n∗, compute r(n; �) and minimize r(n; �) with respect to � and
t. We denote, respectively, the minimizer by �B2 and tB2 .

(2c) Censoring scheme is 
-FCT.
For each n=1; : : : ; n∗, compute r(n; �) and minimize r(n; �) with respect to � and

. We denote, respectively, the minimizer by �B3 and 
B3 .

(2d) Censoring scheme is FUCT.
For each n = 1; : : : ; n∗, compute r(n; �) and minimize r(n; �) with respect to �, t
and 
. We denote, respectively, the minimizer by �B4 , tB4 and 
B4 .

(3) Compare the risks among r(0; 0) and r(n; �Bi). Let S={n∈ In∗ | r(n; �Bi)¡r(0; 0)}.
Then, for i = 1; 2; 3; 4; nBi , is determined as

nBi =

{
0 if S = 5;

min{n | n∈ S} if S 	= 5:
(4.1)

Numerical approximation C

First let L(N; t∗) = t∗=N where t∗ = 2. Take tj ≡ tj(N; t∗) = (j − 0:5)L(N; t∗), 
j =
0:0001(0:0002)tj; j = 1; : : : ; N , for 0¡
6 t6 t∗; N = 60 000. Let IN be de>ned in
(3.6).

(1) t-FCT scheme
For each n, compute r(n; �B2) and take

tB2(n) = min
{
ti | i ∈ IN ; r(n; �B2) = min

16j6N
{r(n; �B2) ∀ti¿ 
¿ 0}

}
:

(2) 
-FCT scheme
For each n, compute r(n; �B3) and take


B3(n) = min
{

i | i ∈ IN ; r(n; �B3) min

16j6N
{r(n; �B3) ∀t¿ 
j ¿ 0}

}
:
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(3) FUCT scheme
For each n, compute r(n; �B4) and take the pair

(tB4 ; 
B4) = min
{

(ti; 
j) | i; j ∈ IN ; r(n; �B4)

= min
16j6N; 16i6N

{r(n; �B4) ∀ti¿ 
j ¿ 0}
}

:

To illustrate the proposed Bayes plan using the Algorithm B proposed in this section,
some numerical examples are studied under quadratic loss. For its convenience for
comparisons, here we take same constants as that in Lam and Choy (1995), so we
take � = 3:0, � = 2:0, t = 2, 
 = 1, a0 = 20:0, a1 = 5:0, a2 = 10:0, C1 = 0:5, C3 = 50 and
C2 = 0 (see Table 5). For other cases, we take C2 = 0:5. In each table one coeOcient
is permitted to vary and the others are kept >xed. Here (nBi ; �Bi) denotes optimal
sampling plan, while r(nBi ; �Bi) is its Bayes risk under various situations as de>ned in
Algorithm B.

For instance, under FCT scheme (Table 1), corresponding to (�; �; t; 
; a0; a1; a2; C1;
C2; C3) = (2:5; 2; 2; 1; 20; 5; 10; 0:5; 0:5; 50) the optimal sampling plan (nB1 ; �B1) is given
by (nB1 ; D

∗
n (m)) = (2; 1:2717) which means 2 items are taken from the batch for in-

spection and accept the batch if the total length of observed lifed times (z(n) ≡∑n
i=1 zi) is no less than D∗

n (m) = 1:2717 (see (3.3)). Its Bayes risk is 42.0310.
Also, for the FUCT scheme (Table 4), corresponding to (�; �; a0; a1; a2; C1; C2; C3) =
(3:5; 2; 20; 5; 10; 0:5; 0:5; 50) the optimal sampling plan (nB4 ; tB4 ; 
B4 ; �B4) is given by
(nB4 ; tB4 ; 
B4 ; D

∗
n (m)) = (2; 1:9758; 0:4518; 1:2717) which means that 2 items are drawn

from the batch for inspection and the censoring time follows a uniform distribution
U (l.9758–0.4518, 1.9758). The batch is accepted if the total length of observed life
times is no less than 1.2717. It Bayes risk is 43.5541. For some optimal solution
(nBi ; �Bi), if nBi = 0, the total length of observed life times is 0 and thus the batch is
rejected if its associated D∗

n (m)¿ 0, otherwise the batch is accepted.
It is easy to see that r(nB4 ; �B4)6 r(nB1 ; �B1), so the scheme FUCT is always more

favorable than FCT to the experimenter in the sense of its Bayes risk. However, for the
comparison between scheme t-FCT and scheme 
-FCT, it depends on values of those
parameters �; �; a0; : : :, etc. As can be seen from entries of Tables 2 and 3, sometimes
t-FCT is more favorable to an experimenter, sometimes 
-FCT is more favorable in
the sense of its Bayes risk. However, it is to be noted that a censoring scheme is to
be chosen beforehand by an experimenter which is supposed to be most appropriate to
him.

In Table 5, we tabulate both the optimal solutions and its risks from Lam and Choy
(1995) and the proposed Bayes solution of (3.3) in Section 3 taking exactly the same
constants of Lam and Choy (1995), i.e. (�; �; t; 
; a0; a1; a2; C1; C2; C3)=(3:0; 2:0; 2; 1; 20;
5:0; 10; 0:5; 0; 50). Again, it shows that the optimal solution of Lam and Choy (1995)
is not a Bayes solution.

In Figs. 1 and 2, Bayes risks r(n; �B1) are plotted with respect to n for various
values of C1 which keeping 
 = 0:25 and 2.0, respectively, and other parameters
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Fig. 1. Under FCT scheme, 
 = 0:25, plots of Bayes risk r for various C1 keeping other parameters >xed.
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Fig. 2. Under FCT scheme, 
 = 2:0, plots of Bayes risk r for various C1 keeping other parameters >xed.

(�; �; t; a0; a1; a2; C2; C3) = (3:0; 2:0; 2; 20; 5; 10; 0:5; 60). In Figs. 3 and 4, Bayes risks
r(n; �B2) are plotted with respect to n and C1 respectively under t-FCT scheme keep-
ing 
 = 0:25, n= 10 (for Fig. 4), C1 = 0:5, C2 = 60 (Fig. 3) and other parameters >xed
as in Fig. 1.

5. Conclusion

Lam and Choy’s (1995) model is reconsidered under a general Bayes set up for
more general situation of censoring. Four types of data are respectively considered



690 W.-T. Huang, Y.-P. Lin / Computational Statistics & Data Analysis 44 (2004) 669–691

r(
n,

de
lta

ε2
)

60

58

56

54

52

50

48

46

44
1 2 3 4 5 6 7 8 9 10

n

C2=0.1
C2=0.5

C2=10
C2=15

Fig. 3. Under t-FCT scheme, 
 = 0:25; C1 = 0:5; C3 = 60, plots of Bayes risk r for various C2 keeping
other parameters >xed.
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Fig. 4. Under t-FCT scheme, 
= 0:25; C2 = 0:5; n= 10, plots of Bayes risk r with respect to C1 for various
C3 keeping other parameters >xed.

for uniform random censoring. Censoring time t and length of the support of uniform
distribution 
 are respectively considered as either >xed or as a parameter. Cost of unit
time for experiment is also included in the loss function. A Bayes sampling plan has
been proposed under general setting for various situations of censoring and an explicit
Bayesian sampling has been derived for a quadratic loss. Scheme A and Algorithm B
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are proposed to >nd the optimal Bayes sampling plan. Some optimal Bayes plans and
its Bayes risks are tabulated (Tables 1–5). Some Bayes risks are also plotted for some
special parameters. It has been shown that for the special situation (both t and 
 are
>xed) the sampling plan proposed by Lam and Choy (1995) is not Bayes.

It should be pointed out that the Bayes risk is not a smooth function of those vari-
ables involved, therefore numerical computations for >nding optimal solutions are quite
sensitive to computing method. To strengthen its accuracy of the numerical approxi-
mation, we take N = 60 000 for division of [0; t∗], which is much bigger than that of
the Lam and Choy’s case.

To extend the life model under consideration, it is natural to consider Weibull, IFR
or more general model. The Bayes rule proposed in (2.11) can be analogously applied
for general model, however, its computaion may be laborious.
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